WebSurfer#
FastAgency allows you to quickly create workflows with capabilities like live browsing, automatic data retrieval, and tasks requiring up-to-date web information, making it easy to integrate web functionality.
Adding Web Surfing Capabilities to Agents#
FastAgency provides two ways to add web surfing capabilities to agents. You can either:
- Use a WebSurferAgent, which comes with built-in web surfing capabilities (recommended)
- Enhance an existing agent with web surfing capability
In this guide, we'll demonstrate both methods with a real-world example. We’ll create a workflow where agents search the web for real-time data.
We’ll build agents and assign them the task: “Search for information about Microsoft AutoGen and summarize the results” to showcase its ability to browse and gather real-time data in action.
Installation & Setup#
We strongly recommend using Cookiecutter for setting up the project. Cookiecutter creates the project folder structure, default workflow, automatically installs all the necessary requirements, and creates a devcontainer that can be used with Visual Studio Code.
You can setup the project using Cookiecutter by following the project setup guide.
Alternatively, you can use pip + venv. Before getting started, make sure you have installed FastAgency with support for the AutoGen runtime by running the following command:
This command installs FastAgency with support for the Console interface and AutoGen framework.
Create Bing Web Search API Key#
To create Bing Web Search API key, follow the guide provided.
Note
You will need to create Microsoft Azure Account.
Set Up Your API Key in the Environment#
You can set the Binga API key in your terminal as an environment variable:
Example: Search for information about Microsoft AutoGen and summarize the results#
Step-by-Step Breakdown#
1. Import Required Modules#
The example starts by importing the necessary modules from AutoGen and FastAgency. These imports lay the foundation for building and running multi-agent workflows.
import os
from typing import Any
from autogen import UserProxyAgent
from fastagency import UI, FastAgency
from fastagency.runtimes.autogen import AutoGenWorkflows
from fastagency.runtimes.autogen.agents.websurfer import WebSurferAgent
from fastagency.ui.console import ConsoleUI
To create a new web surfing agent, simply import WebSurferAgent
, which comes with built-in web surfing capabilities, and use it as needed.
import os
from typing import Any
from autogen import UserProxyAgent
from autogen.agentchat import ConversableAgent
from fastagency import UI, FastAgency
from fastagency.runtimes.autogen import AutoGenWorkflows
from fastagency.runtimes.autogen.tools import WebSurferTool
from fastagency.ui.console import ConsoleUI
To enhance existing agents with web surfing capability, import WebSurferTool
from FastAgency and ConversableAgent
from AutoGen.
2. Configure the Language Model (LLM)#
Here, the large language model is configured to use the gpt-4o
model, and the API key is retrieved from the environment. This setup ensures that both the user and websurfer agents can interact effectively.
llm_config = {
"config_list": [
{
"model": "gpt-4o-mini",
"api_key": os.getenv("OPENAI_API_KEY"),
}
],
"temperature": 0.8,
}
3. Define the Workflow and Agents#
In this step, we are going to create two agents and specify the initial message that will be displayed to users when the workflow starts:
-
UserProxyAgent: This agent simulates the user interacting with the system.
-
WebSurferAgent: This agent functions as a web surfer, with built-in capability to browse the web and fetch real-time data as required.
wf = AutoGenWorkflows()
@wf.register(name="simple_websurfer", description="WebSurfer chat") # type: ignore[type-var]
def websurfer_workflow(
ui: UI, params: dict[str, Any]
) -> str:
initial_message = ui.text_input(
sender="Workflow",
recipient="User",
prompt="I can help you with your web search. What would you like to know?",
)
user_agent = UserProxyAgent(
name="User_Agent",
system_message="You are a user agent",
llm_config=llm_config,
human_input_mode="NEVER",
)
web_surfer = WebSurferAgent(
name="Assistant_Agent",
llm_config=llm_config,
summarizer_llm_config=llm_config,
human_input_mode="NEVER",
executor=user_agent,
bing_api_key=os.getenv("BING_API_KEY"),
)
When initiating the WebSurferAgent
, the executor parameter must be provided. This can be either a single instance of ConversableAgent
or a list of ConversableAgent
instances.
The WebSurferAgent
relies on the executor agent(s) to execute the web surfing tasks. In this example, the web_surfer
agent will call the user_agent
agent with the necessary instructions when web surfing is required, and the user_agent
will execute those instructions.
In this step, we create two agents, a web surfer tool and set an initial message that will be displayed to users when the workflow starts:
-
UserProxyAgent: This agent simulates the user interacting with the system.
-
ConversableAgent: This is the conversable agent to which we will be adding web surfing capabilities.
-
WebSurferTool: The tool that gives the ConversableAgent the ability to browse the web after it has been registered.
wf = AutoGenWorkflows()
@wf.register(name="simple_websurfer", description="WebSurfer chat") # type: ignore[type-var]
def websurfer_workflow(
ui: UI, params: dict[str, Any]
) -> str:
initial_message = ui.text_input(
sender="Workflow",
recipient="User",
prompt="I can help you with your web search. What would you like to know?",
)
user_agent = UserProxyAgent(
name="User_Agent",
system_message="You are a user agent",
llm_config=llm_config,
human_input_mode="NEVER",
)
assistant_agent = ConversableAgent(
name="Assistant_Agent",
system_message="You are a useful assistant",
llm_config=llm_config,
human_input_mode="NEVER",
)
web_surfer = WebSurferTool(
name_prefix="Web_Surfer",
llm_config=llm_config,
summarizer_llm_config=llm_config,
bing_api_key=os.getenv("BING_API_KEY"),
)
Now, we need to register the WebSurferAgent with a caller and executor. This setup allows the caller to use the WebSurferAgent for performing real-time web interactions.
The executor
can be either a single instance of ConversableAgent
or a list of ConversableAgent
instances.
The caller
relies on the executor agent(s) to execute the web surfing tasks. In this example, the assistant_agent
agent will call the user_agent
agent with the necessary instructions when web surfing is required, and the user_agent
will execute those instructions.
4. Enable Agent Interaction and Chat#
Here, the user agent starts a conversation with the websurfer agent, which performs a web search and returns summarized information. The conversation is then summarized using a method provided by the LLM.
5. Create and Run the Application#
Finally, we create the FastAgency application and launch it using the console interface.
Complete Application Code#
websurfer_agent.py
import os
from typing import Any
from autogen import UserProxyAgent
from fastagency import UI, FastAgency
from fastagency.runtimes.autogen import AutoGenWorkflows
from fastagency.runtimes.autogen.agents.websurfer import WebSurferAgent
from fastagency.ui.console import ConsoleUI
llm_config = {
"config_list": [
{
"model": "gpt-4o-mini",
"api_key": os.getenv("OPENAI_API_KEY"),
}
],
"temperature": 0.8,
}
wf = AutoGenWorkflows()
@wf.register(name="simple_websurfer", description="WebSurfer chat") # type: ignore[type-var]
def websurfer_workflow(
ui: UI, params: dict[str, Any]
) -> str:
initial_message = ui.text_input(
sender="Workflow",
recipient="User",
prompt="I can help you with your web search. What would you like to know?",
)
user_agent = UserProxyAgent(
name="User_Agent",
system_message="You are a user agent",
llm_config=llm_config,
human_input_mode="NEVER",
)
web_surfer = WebSurferAgent(
name="Assistant_Agent",
llm_config=llm_config,
summarizer_llm_config=llm_config,
human_input_mode="NEVER",
executor=user_agent,
bing_api_key=os.getenv("BING_API_KEY"),
)
chat_result = user_agent.initiate_chat(
web_surfer,
message=initial_message,
summary_method="reflection_with_llm",
max_turns=3,
)
return chat_result.summary # type: ignore[no-any-return]
app = FastAgency(provider=wf, ui=ConsoleUI())
websurfer_tool.py
import os
from typing import Any
from autogen import UserProxyAgent
from autogen.agentchat import ConversableAgent
from fastagency import UI, FastAgency
from fastagency.runtimes.autogen import AutoGenWorkflows
from fastagency.runtimes.autogen.tools import WebSurferTool
from fastagency.ui.console import ConsoleUI
llm_config = {
"config_list": [
{
"model": "gpt-4o-mini",
"api_key": os.getenv("OPENAI_API_KEY"),
}
],
"temperature": 0.8,
}
wf = AutoGenWorkflows()
@wf.register(name="simple_websurfer", description="WebSurfer chat") # type: ignore[type-var]
def websurfer_workflow(
ui: UI, params: dict[str, Any]
) -> str:
initial_message = ui.text_input(
sender="Workflow",
recipient="User",
prompt="I can help you with your web search. What would you like to know?",
)
user_agent = UserProxyAgent(
name="User_Agent",
system_message="You are a user agent",
llm_config=llm_config,
human_input_mode="NEVER",
)
assistant_agent = ConversableAgent(
name="Assistant_Agent",
system_message="You are a useful assistant",
llm_config=llm_config,
human_input_mode="NEVER",
)
web_surfer = WebSurferTool(
name_prefix="Web_Surfer",
llm_config=llm_config,
summarizer_llm_config=llm_config,
bing_api_key=os.getenv("BING_API_KEY"),
)
web_surfer.register(
caller=assistant_agent,
executor=user_agent,
)
chat_result = user_agent.initiate_chat(
assistant_agent,
message=initial_message,
summary_method="reflection_with_llm",
max_turns=3,
)
return chat_result.summary # type: ignore[no-any-return]
app = FastAgency(provider=wf, ui=ConsoleUI())
Running the Application#
Ensure you have set your OpenAI API key in the environment. The command will launch a console interface where users can input their requests and interact with the websurfer agent.
Output#
Once you run it, FastAgency automatically detects the appropriate app to execute and runs it. The application will then prompt you with: "I can help you with your web search. What would you like to know?:"
╭── Python module file ───╮
│ │
│ 🐍 websurfer_agent.py │
│ │
╰─────────────────────────╯
[INFO] Importing autogen.base.py
[INFO] Initializing FastAgency <FastAgency title=FastAgency application> with workflows: <fastagency.runtimes.autogen. autogen.AutoGenWorkflows object at 0x109a51610> and UI: <fastagency.ui.console.console.ConsoleUI object at 0x109adced0>
[INFO] Initialized FastAgency: <FastAgency title=FastAgency application>
╭──── Importable FastAgency app ────╮
│ │
│ from websurfer_agent import app │
│ │
╰───────────────────────────────────╯
╭─ FastAgency -> user [workflow_started] ──────────────────────────────────────╮
│ │
│ { │
│ "name": "simple_websurfer", │
│ "description": "WebSurfer chat", │
│ │
│ "params": {} │
│ } │
╰──────────────────────────────────────────────────────────────────────────────╯
╭─ Workflow -> User [text_input] ──────────────────────────────────────────────╮
│ │
│ I can help you with your web search. What would you like to know?: │
╰──────────────────────────────────────────────────────────────────────────────╯
╭── Python module file ──╮
│ │
│ 🐍 websurfer_tool.py │
│ │
╰────────────────────────╯
[INFO] Importing autogen.base.py
[INFO] Initializing FastAgency <FastAgency title=FastAgency application> with workflows: <fastagency.runtimes.autogen.autogen.AutoGenWorkflows object at 0x11368cbd0> and UI: <fastagency.ui.console.console.ConsoleUI object at 0x13441c510>
[INFO] Initialized FastAgency: <FastAgency title=FastAgency application>
╭─── Importable FastAgency app ────╮
│ │
│ from websurfer_tool import app │
│ │
╰──────────────────────────────────╯
╭─ FastAgency -> user [workflow_started] ──────────────────────────────────────╮
│ │
│ { │
│ "name": "simple_websurfer", │
│ "description": "WebSurfer chat", │
│ │
│ "params": {} │
│ } │
╰──────────────────────────────────────────────────────────────────────────────╯
╭─ Workflow -> User [text_input] ──────────────────────────────────────────────╮
│ │
│ I can help you with your web search. What would you like to know?: │
╰──────────────────────────────────────────────────────────────────────────────╯
In the prompt, type Search for information about Microsoft AutoGen and summarize the results and press Enter.
This will initiate the task, allowing you to see the real-time conversation between the agents as they collaborate to complete it. Once the task is finished, you’ll see an output similar to the one below.
╭─ workflow -> user [workflow_completed] ──────────────────────────────────────╮
│ │
│ { │
│ "result": "Microsoft AutoGen is an open-source framework designed │
│ to simplify the orchestration, optimization, and automation of large │
│ language model (LLM) workflows. It features customizable agents, │
│ multi-agent conversations, tool integration, and human involvement, │
│ making it suitable for complex AI applications. Key resources include │
│ the Microsoft Research Blog and the GitHub repository for AutoGen." │
│ } │
╰──────────────────────────────────────────────────────────────────────────────╯
╭─ FastAgency -> user [workflow_started] ──────────────────────────────────────╮
│ │
│ { │
│ "name": "simple_websurfer", │
│ "description": "WebSurfer chat", │
│ │
│ "params": {} │
│ } │
╰──────────────────────────────────────────────────────────────────────────────╯
╭─ Workflow -> User [text_input] ──────────────────────────────────────────────╮
│ │
│ I can help you with your web search. What would you like to know?: │
╰──────────────────────────────────────────────────────────────────────────────╯
The agent will summarize its findings and then prompt you again with "I can help you with your web search. What would you like to know?:", allowing you to continue the conversation with the web surfer agent.
This example demonstrates the power of the AutoGen runtime within FastAgency, showcasing how easily LLM-powered agents can be integrated with browsing capabilities to fetch and process real-time information. By leveraging FastAgency, developers can quickly build interactive, scalable applications that interact with live data sources.